Minimizing Area among Lagrangian Surfaces: the Mapping Problem
نویسنده
چکیده
This paper introduces a geometrically constrained variational problem for the area functional. We consider the area restricted to the lagrangian surfaces of a Kähler surface, or, more generally, a symplectic 4-manifold with suitable metric, and study its critical points and in particular its minimizers. We apply this study to the problem of finding canonical representatives of the lagrangian homology (that part of the homology generated by lagrangian cycles). We show that the lagrangian homology of a Kähler surface (or of a symplectic 4-manifold) is generated by minimizing lagrangian surfaces that are branched immersions except at finitely many singular points. We precisely describe the structure of these singular points. In particular, these singular points are represented by lagrangian cones with an associated local Maslov index. Only those cones of Maslov index 1 or −1 may be area minimizing. The mean curvature of the minimizers satisfies a first-order system of partial differential equations of “Hodge-type”.
منابع مشابه
Lagrangian Relaxation Method for the Step fixed-charge Transportation Problem
In this paper, a step fixed charge transportation problem is developed where the products are sent from the sources to the destinations in existence of both unit and step fixed-charges. The proposed model determines the amount of products in the existing routes with the aim of minimizing the total cost (sum of unit and step fixed-charges) to satisfy the demand of each customer. As the problem i...
متن کاملOn Convex Surfaces with Minimal Moment of Inertia
We investigate the problem of minimizing the moment of inertia among convex surfaces in R having a specified surface area. First we prove a minimizing surface exists, and derive a necessary condition holding at points of positive curvature. Then we show that an equilateral triangular prism is the optimal triangular prism, that the cube is the optimal rectangular prism, and that the sphere is (l...
متن کاملAre ghost surfaces quadratic-flux-minimizing?
Two candidates for “almost-invariant” toroidal surfaces passing through magnetic islands, namely quadratic-flux-minimizing (QFMin) surfaces and ghost surfaces, use families of periodic pseudo-orbits (i.e. paths for which the action is not exactly extremal). QFMin pseudo-orbits, which are coordinate-dependent, are field lines obtained from a modified magnetic field, and ghost-surface pseudo-orbi...
متن کاملSingularities of Lagrangian Mean Curvature Flow: Zero-maslov Class Case
We study singularities of Lagrangian mean curvature flow in C when the initial condition is a zero-Maslov class Lagrangian. We start by showing that, in this setting, singularities are unavoidable. More precisely, we construct Lagrangians with arbitrarily small Lagrangian angle and Lagrangians which are Hamiltonian isotopic to a plane that, nevertheless, develop finite time singularities under ...
متن کاملOn a Minimal Lagrangian Submanifold of C Foliated by Spheres
In general, not much is known about minimal submanifolds of Euclidean space of high codimension. In [1], Anderson studies complete minimal submanifolds of Euclidean space with finite total scalar curvature, trying to generalize classical results of minimal surfaces. More recently, Moore [10] continues the study of this kind of minimal submanifolds. Harvey and Lawson [6] also study a particular ...
متن کامل